NEW CUCURBITANE TRITERPENOIDS FROM MOMORDICA CHARANTIA

Majekodunmi O. Fatope,*
Department of Cbemistry, Bayero University, P.M.B. 3011, Kano, Nigeria
Yoshio Takeda,* Hiroyasu Yamashita,
Faculty of Pharmaceutical Sciences, The University of Tokusbima, Tokusbima 770, Japan
Hikaru Okabe, and Tatsuo Yamauchi
Faculty of Pbarmaceutical Sciences, Fukuoka University, Jonan-ku, Fukuoka, 814-01, Japan

Abstract

Three new cucurbitane triterpenoids, 1, 3, and 6, have been isolated from the leaves of Momordica charantia along with two other known compounds, momordicines I [8] and II [9]. The structures of the new metabolites were determined by interpretation of spectral data.

Momordica charantia L. (Cucurbitaceae), trivially called African cucumber or balsam pear (1), is widely distributed in West Africa, India, and Japan. The sample used in this study originated in Kano, a city in northern Nigeria. A related species, Momordica balsamina L., which is found in southern Nigeria, is uncommon in Kano. However, the two species are used both as a bitter stomachic and a purgative. M. charantia is available at local herbal drug stores in Kano city.

The leaves of M. charantia contain antibacterial and insecticidal principles (2-4). A number of cucurbitane triterpenoids, named momordicosides and momordicines, respectively $(5,6)$, have previously been isolated from the fruits and leaves of M. charantia. This paper details the isolation and structure elucidation of three new compounds 1, 3, and 6 obtained from the leaves of M. charantia.

RESULTS AND DISCUSSION

The MeOH extract of the dried leaves of M . charantia was redissolved in 90% MeOH and extracted successively with n-hexane, CCl_{4}, and CHCl_{3}. Extensive chromatography of the CHCl_{3}-soluble fraction over Si gel and Lobar RP-8 columns gave compounds 1, 3, and 6 together with the known momordicines I [8] and II [9] (5).

Compound 1, $[\alpha] \mathrm{D}+89.0^{\circ}(\mathrm{MeOH})$, was obtained as an amorphous powder, and

$1 \mathrm{R}=\mathrm{H}$
$2 R=A c$

its molecular formula was determined as $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{O}_{8} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}$ based on elemental analysis and fabms. The ${ }^{1} \mathrm{H} \mathrm{nmr}$ of 1 showed the presence of five tertiary methyl groups at δ $0.74\left(\mathrm{H}_{3}-30\right), 0.98\left(\mathrm{H}_{3}-18\right), 1.14\left(\mathrm{H}_{3}-29\right), 1.40\left(\mathrm{H}_{3}-19\right)$, and $1.44\left(\mathrm{H}_{3}-28\right)$ (each 3 H , s), a secondary methyl group at $\delta 1.16\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{3}-21\right)$, and two methyl groups on olefinic carbons at $\delta 1.72$ and 1.73 (each $3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{H}_{3}-26$ and H_{3} 27). In addition, the ${ }^{1} \mathrm{H} \mathrm{nmr}$ showed the presence of three secondary carbinyl groups at $\delta 3.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.58(1 \mathrm{H}, \mathrm{brd}, J=5.0 \mathrm{~Hz}, \mathrm{H}-7)$, and $4.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23)$, two trisubstituted olefinic bonds at $\delta 5.63(1 \mathrm{H}, \mathrm{brd}, J=8.1 \mathrm{~Hz}, \mathrm{H}-24)$ and $6.06(1 \mathrm{H}$, br $\mathrm{d}, J=5.0 \mathrm{~Hz}, \mathrm{H}-6$), and a hexopyranose moiety indicated by one anomeric proton signal at $\delta 5.09\left(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$.

The ${ }^{13} \mathrm{C}$-nmr spectrum of 1 (Table 1) showed signals due to eight methyl groups, seven methylene groups, four methine groups and four quaternary carbon atoms, two trisubstituted olefinic bonds at $\delta 121.09,131.83$ (each d), 130.84, and 148.30 (each s), a hexopyranose moiety, and three secondary carbinyl groups at $\delta 65.31,72.55$, and 76.06 (each d), respectively. Acetylation of compound 1 gave the hexaacetate 2. Methanolysis of 1 gave methyl-1-0-glucoside which was identified by gle as its trimethylsilyl ether. Based on these data and on the co-occurrence of momordicines I [8] and II [9] in the plant material presently studied, compound 1 was assumed to be a trihydroxycucurbitadiene monoglucoside.

The structure of the aglycone and the position of the glycosidic linkage of 1 were further elucidated as follows. In the ${ }^{1} \mathrm{H}$-COSY spectrum (Figure 1) of 1, H_{a} crossed peaks with both H_{d} and the signal at $\delta 2.44\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{g}}\right)$, and H_{d} crossed peaks with

8 R=H
9 R= β-D-glucopyranosyl

Table 1. ${ }^{13} \mathrm{C}$-nmr Data ${ }^{2}$ of Compounds 1,3, and $\mathbf{6}$ (measured in $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ solution).

Carbon		Compound				
		1	3		6	
C-1		21.72 (t)	21.76		21.75	
C-2		30.12 (r)	29.94		29.91 (
C-3		76.06 (d)	75.68		75.67 (d)	(d)
C-4		41.95 (s)	41.79	(s)	41.79 ((s)
C-5		148.30 (s)	145.73		145.73	(s)
C-6		121.09 (d)	$124.29{ }^{\text {b }}$		124.29 ((d)
C-7		72.55 (d)	65.73		65.72 (d)	(d)
C-8		48.14 (d)	50.66		50.59	(d)
C-9		34.41 (s)	50.61		50.64	(s)
C-10		39.29 (d)	36.90		36.89	(d)
C-11		28.23 (t)	22.71		22.71	
C-12		32.89 (t)	29.44		29.46	(t)
C-13		46.43 (s)	45.76	(s)	45.79	(s)
C-14	- . . .	48.46 (s)	48.28	(s)	48.28	(s)
C-15		34.82 (t)	34.96		34.96	
C-16		30.65 (t)	27.75		27.76	(t)
C-17		51.34 (d)	50.15		50.14	(d)
C-18	. . .	15.64 (q)	15.05		15.05	(q)
C-19		29.33 (q)	207.81		207.76	(d)
C-20		32.99 (d)	36.58		36.36	(d)
C-21	\cdots	19.31 (q)	18.96		18.97	(q)
C-22		45.51 (t)	39.56		39.72	(t)
C-23		65.31 (d)	$124.23{ }^{\text {b }}$		128.41	(d)
C-24		131.83 (d)	141.73		137.68	(d)
C-25		130.84 (s)	69.72		74.83	(s)
C-26		25.79 (q)	30.85		26.47	
C-27		$18.10^{\text {b }}$ (q)	30.85		26.08	(q)
C-28		26.34 (q)	26.24		26.23	(q)
C-29		28.38 (q)	27.39		27.36	
C-30		$18.07^{\text {b }}$ (q)	18.20		18.19	
OMe					50.21	(q)
C-1'		101.20 (d)				
C-2'		75.16 (d)				
C-3'		78.77 (d)				
C-4'		71.93 (d)				
C-5'		78.50 (d)				
C-6'		62.88 (t)				

${ }^{2}$ Proton attachments determined via DEPT are shown in parentheses.
${ }^{\text {b }}$ The assignments in the same vertical column may be reversed.
the signal at $\delta 2.51\left(1 \mathrm{H}, \mathrm{br} s, \mathrm{H}_{\mathrm{f}}\right)$. As a result, $\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{f}}$, and H_{g} were assigned as H $6, \mathrm{H}-7, \mathrm{H}-8$, and $\mathrm{H}-10$, and the presence of a trisubstituted double bond at $\mathrm{C}-5$ and a secondary carbinyl group at $\mathrm{C}-7$ was thus established. The location of a glycosidic linkage at $\mathrm{C}-7$ was inferred from both the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of hexaacetate $\mathbf{2}$ derivative of 1 and nOe experiments. The resonance frequency of H_{d} did not shift downfield on acetylation, whereas H_{c} and H_{e} moved downfield relative to $\mathbf{1}$ ($\delta 4.83$ vs. 5.67 and 3.81 vs. 4.74). On separate irradiation of H_{d} and H_{f}, difference n Oe's were observed for the anomeric proton at $\delta 5.09(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz})$, confirming the location of the glucose moiety. The configuration of the glycosidic linkage of $\mathbf{1}$ was determined as β based on the coupling constant ($J=7.8 \mathrm{~Hz}$) of the anomeric proton.

In the ${ }^{1} \mathrm{H}$-COSY spectrum of $\mathbf{1}$, the methyl protons H_{j} and H_{k} crossed peaks with

Figure 1. ${ }^{1} \mathrm{H}$-COSY spectrum of compound 1.
$\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{b}}$ crossed peaks with $\mathrm{H}_{\mathrm{c}}, \mathrm{H}_{\mathrm{c}}$ crossed peaks with both the signal at $\delta 1.95(1 \mathrm{H}, \mathrm{m})$ $\left(\mathrm{H}_{\mathrm{i}}\right)$ and $1.25(1 \mathrm{H}, \mathrm{m})\left(\mathrm{H}_{\mathrm{n}}\right), \mathrm{H}_{\mathrm{n}}$ crossed peaks with the signal at $\delta 2.16(1 \mathrm{H}, \mathrm{m})\left(\mathrm{H}_{\mathrm{h}}\right)$. H_{h} was coupled to the methyl hydrogen atoms (H_{o}). Taken together these data supported the location of a secondary hydroxyl group at C-23 and the proposed structure for the side chain carbons. The methyl protons (H_{1} and H_{p}) crossed peaks, supporting the location of two methyl groups at $\mathrm{C}-4$. Separate irradiation of the resonance frequency of H_{1} and H_{p} gave difference nOe 's for H_{c}. Considering the coupling pattern of H_{e}, a secondary hydroxyl group with axial configuration must be located at C-3. All data taken together, compound 1 was assumed to be $3 \beta, 7 \beta, 23$-trihydroxycucurbita-5,24-diene-7-0- β-D-glucoside [1]. This assumption was further substantiated by the results of extensive nOe experiments (Figure 2).

Compound 3, $\{\alpha] \mathrm{D}+58.0^{\circ}(\mathrm{MeOH})$, was obtained as an amorphous powder. The molecular formula was determined as $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ based on fabms, eims, and ele-

Figure 2. Difference nOe of compound 1.
mental analyses. The ${ }^{1} \mathrm{H}$ - [and $\left.{ }^{13} \mathrm{C}-\right]$ nmr spectra of 3 showed the presence of an aldehyde group at $\delta 10.66\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19, \mathrm{H}_{2}\right)$ \{ $\delta 207.81$ (d) , two secondary carbinyl groups at $\delta 4.38\left(1 \mathrm{H}\right.$, brd, $\left.J=5.5 \mathrm{~Hz}, \mathrm{H}-7, \mathrm{H}_{\mathrm{e}}\right)$ and $3.84\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3, \mathrm{H}_{\mathrm{f}}\right)[\delta 65.73$ and 75.68 (each d)], a trisubstituted double bond at $\delta 6.28(1 \mathrm{H}$, br d, $J=4.1 \mathrm{~Hz}, \mathrm{H}-$ $6, \mathrm{H}_{\mathrm{b}}$) $[\delta 124.29(\mathrm{~d})$ and $145.73(\mathrm{~s})]$, a trans disubstituted double bond at $\delta 5.93(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-23, \mathrm{H}_{\mathrm{c}}$) and $5.91\left(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}, \mathrm{H}-24, \mathrm{H}_{\mathrm{d}}\right)$ [$\delta 124.23$ (d) and 141.73 (d)], and seven methyl groups at $\delta 0.85,0.88,1.19,1.49,1.546,1.551$ (each $3 \mathrm{H}, \mathrm{s}$), and $0.99(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz})[\delta 15.50,18.20,18.96,26.24,27.39,30.85$, and 30.85 (each q)]. In addition to the above mentioned signals, the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum (Table 1) further showed signals due to seven methylene groups, four methine groups, four quaternary carbon atoms, and a tertiary carbinyl group at $\delta 69.72$ (s).

These spectral data of 3 are very similar to those reported (5) for momordicine I [8] except that one of the two trisubstituted olefinic bonds and the signal at $\mathrm{C}-23$ (the carbon having a hydroxy group) in 8 were absent and, instead, a trans disubstituted olefinic bond and a hydroxylated quaternary carbon atom at $\mathrm{C}-25$ were observed. Thus, the structure of compound 3 was assumed to be $3 \beta, 7 \beta, 25$-trihydroxycucurbita- $5,(23 E)$ -dien-19-al [3]. The substitution pattern of C-10, C-6, C-7, and C-8 was confirmed by following the cross peaks: $\mathrm{H}_{\mathrm{g}}[\delta 2.69(1 \mathrm{H}, \mathrm{m}), \mathrm{H}-10] \mapsto \mathrm{H}_{\mathrm{b}}(6-\mathrm{H}) \mapsto \mathrm{H}_{\mathrm{e}}(\mathrm{H}-7) \mapsto \mathrm{H}_{\mathrm{h}}[\delta$ 2.39 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-8$)] in the ${ }^{\mathrm{H}} \mathrm{H}$-COSY spectrum of 3 . The chemical shift and coupling pattern of H_{f} resonance are consistent with those of momordicine I [8]. H_{f} also crossed peaks with the signals at $\delta 1.19$ and 1.49 (each 3 H , s) assigned as $\mathrm{H}_{3}-29$ and $\mathrm{H}_{3}-28$ in the ${ }^{1} \mathrm{H}$-NOESY spectrum of 3 . Thus, the stereochemistry of the hydroxyl group located at $\mathrm{C}-3$ must be β. The location of an aldehyde group at $\mathrm{C}-9 \beta$ was supported by observation of the cross peaks between H_{a} and H_{h} in the ${ }^{1} \mathrm{H}$-NOESY spectrum.

The structure of the side chain was substantiated from the following observations. H_{c} resonance crossed peaks with $\mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{i}}[\delta 2.24(1 \mathrm{H}, \mathrm{m})]$, and $\mathrm{H}_{\mathrm{i}}[\delta 1.85(1 \mathrm{H}, \mathrm{m})]$ in the ${ }^{1} \mathrm{H}$-COSY spectrum of 3 . In the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ long range-COSY spectrum, H_{c} crossed peaks with the quaternary carbon C-25. Acetylation of compound 3 gave the diacetate $4, \mathrm{mp} 101-104^{\circ}$. The diacetate 4 was found identical with aglycone diacetate of previously isolated momordicoside L [5] (6).

Compound 6, $[\alpha] \mathrm{D}+48.9^{\circ}(\mathrm{MeOH})$ was obtained as an amorphous powder. Its molecular formula, $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}$, was determined on the basis of ms and elemental analyses and found to be 14 mass units more than that of compound 3. The spectral characteristics of $\mathbf{3}$ and $\mathbf{6}$ (see Experimental and Table 1) are very similar except for the appearance of a methoxy group signal in the latter. Acetylation of compound 6 gave the diacetate 7. Thus, compound $\mathbf{6}$ is the methyl ether of compound 3. This structural assignment was supported by ${ }^{13} \mathrm{C}$ signals of $\mathrm{C}-23$ and $\mathrm{C}-24$, which moved ca. 4 ppm downfield and ca. 4 ppm upfield, respectively, in 6 relative to 3 .

EXPERIMENTAL

General experimental procedures.-Ir spectra were measured with a Hitachi 215 spectrophotometer. Optical rotations were determined with a Union Giken PM-201 digital polarimeter. Nmr spectra were measured with a JEOL FX-200 or JEOL GSX- 400 spectrometer. Mass spectra were obtained with a JEOL D-300 mass spectrometer (eims, 70 eV ; fabms, gun high voltage, 3.0 kV ; matrix, thioglycerol). Kiesel gel 60 ($0.040-0.063 \mathrm{~mm}$; Merck) was used for cc , and Kiesel gel $60 \mathrm{~F}_{254}$ precoated plates (0.25 mm or 0.5 mm ; Merck) were used for tlc and preparative layer chromatography.

Plant material.-The plant material was collected in Sharada, Kano, Nigeria in April 1987 by Mallam Isa Isyaku and identified as M. cbarantia by Dr. Y. Karatela and Mr. Ali Garko. A voucher specimen was deposited in the herbarium of Bayero University, Kano, Nigeria.

IsOlation proceddures.-The MeOH extract of the dried leaves (420 g) of M. charantia was concentrated in vacuo. The residue was dissolved in $90 \% \mathrm{MeOH}(330 \mathrm{ml})$, and the solution was extracted with n-hexane ($300 \mathrm{ml} \times 3$). To the $90 \% \mathrm{MeOH}$ layer, $\mathrm{H}_{2} \mathrm{O}(54 \mathrm{ml})$ was added, and the resulting $80 \% \mathrm{MeOH}$
solution was extracted with $\mathrm{CCl}_{4}(300 \mathrm{ml} \times 3)$. The $80 \% \mathrm{MeOH}$ layer was converted to $65 \% \mathrm{MeOH}$ by addition of $\mathrm{H}_{2} \mathrm{O}(112 \mathrm{ml})$, and the solution was extracted with $\mathrm{CHCl}_{3}(300 \mathrm{ml} \times 3)$. The organic extracts were dried and evaporated in vacuo to give the following residues: 3 g from n-hexane layer; 3 g from CCl_{4} layer, and 18 g from CHCl_{3} layer. The $65 \% \mathrm{MeOH}$ layer was concentrated in vacuo to give a residue (37 g). A portion (17.5 g) of the residue from CHCl_{3} extract was chromatographed on $\mathrm{Si} \mathrm{gel}(750 \mathrm{~g})$ and eluted with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ mixtures containing increasing MeOH content in this order: CHCl_{3} (2 liters), $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (19:1) (2.5 liters), $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($9: 1$) (3.5 liters), $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (17:3) (4 liters), $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (4:1) (3 liters). Fraction of 200 ml were collected.

Fractions $33-37$ gave a residue (2.46 g) which was rechromarographed on Si gel (200 g) and eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ with increasing MeOH content. A portion (1.16 g) of the $10 \% \mathrm{MeOH}$ eluate (1.48 g) was separated on a Lobar column (LiChroprep RP-8) using $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ as eluent. Collecting $8-\mathrm{ml}$ fractions, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(7: 3)\left(1\right.$ liter) and $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(4: 1)(500 \mathrm{ml})$ were passed through the column in that order. Fractions 24-60 gave momordicin II [9] (806 mg) on evaporation in vacuo, and fractions 121-150 gave compound 1 (136 mg) on evaporation.

Fractions $10-15$ gave a residue (1.34 g) on evaporation. The residue was rechromatographed on Si gel (140 g) column with $\mathrm{MeOH} / \mathrm{CHCl}_{3}$ mixtures of increasing MeOH content. The $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($49: 1$) eluent gave a residue (218 mg) which was purified by preparative layer chromatography [Si gel, CHCl_{3} MeOH (93:7) developed three times] and gave compound 6 (84 mg) ; $\mathrm{CHCl}_{3}-\mathrm{MeOH}(97: 3)$ eluent gave a residue (590 mg) which was recrystallized from CHCl_{3} to give momordicin I $[8](185 \mathrm{mg})$. The residue from mother liquor was separated on Lobar column (LiChroprep RP-8) [solvent MeOH-H2O (8:2)] to give compound 3 (86 mg). Momordicines I [8] and II [9] were identical with authentic samples.

COMPOUND 1.-Amorphous powder: $[\alpha]^{26} \mathrm{D}+89.0^{\circ}(c=0.43, \mathrm{MeOH})$; ir $v \max (\mathrm{KBr}) 3450$ (br), 1650, 1475, 1460, 1390, 1080, 1045, 1020, $990,945 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta 0.74(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{H}_{3}-30\right), 0.98\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 1.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.16\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 1.25\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}-\right.$ 22), $1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-19\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-28\right), 1.72$ and 1.73 (each $\left.3 \mathrm{H}, \mathrm{d}, J=1.1 \mathrm{~Hz}, \mathrm{H}_{3}-26\right), 1.95$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}-22\right), 2.16(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-20), 2.44(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 2.51(\mathrm{br} \mathrm{s}, \mathrm{H}-8), 3.81(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.03$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 4.09\left(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.33-4.36\left(2 \mathrm{H}, \mathrm{H}-3^{\prime}\right.$ and $\left.\mathrm{H}-4^{\prime}\right), 4.46(1 \mathrm{H}, \mathrm{dd}, J=11.9$ and $\left.5.3 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.58(1 \mathrm{H}$, br d, $J=5.0 \mathrm{~Hz}, \mathrm{H}-7), 4.62\left(1 \mathrm{H}, \mathrm{dd}, J=2.4\right.$ and $\left.11.9 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.83$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23$), $5.09\left(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.63(1 \mathrm{H}$, br d, $J=8.1 \mathrm{~Hz}, \mathrm{H}-24), 6.06(1 \mathrm{H}, \mathrm{br} \mathrm{d}$, $J=5.0 \mathrm{~Hz}, \mathrm{H}-6$); ${ }^{13} \mathrm{C} \mathrm{nmr}$ see Table 1; eims $m / z 422.3513\left[\mathrm{M}-\mathrm{Gluc}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$(calcd for $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{1}$, 422.3548); fabms $m / z[\mathrm{M}+\mathrm{Na}]^{+} 643(+\mathrm{NaI}),[\mathrm{M}+\mathrm{K}]^{+} 659$ (+KI). Anal. found C $66.41, \mathrm{H} 10.11 \%$; calcd for $\mathrm{C}_{36} \mathrm{H}_{60} \mathrm{O}_{8} \cdot 2 / 3 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 66.73, \mathrm{H} 9.80 \%$.

Hexancetate 2.-Compound $1(10 \mathrm{mg})$ was treated with a mixture of $\mathrm{Ac}_{2} \mathrm{O}(0.5 \mathrm{ml})$ and pyridine $(0.5 \mathrm{ml})$ overnight at room temperature. Excess MeOH was added to the mixture and the solvent was removed in vacuo. The residue was purified by preparative layer chromatography (solvent $\mathrm{Et}_{2} \mathrm{O}$, developed twice) to give hexaacetate $2(13.7 \mathrm{mg})$ as an amorphous powder: Ir $v \max \left(\mathrm{CHCl}_{3}\right) 1760,1730,1455$, 1380, 1260, 1250-1210, 1140, 1040, $990,945 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.70,0.87,0.92$ (each $3 \mathrm{H}, \mathrm{s}), 0.90\left(3 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 1.05,1.12,1.70,1.74$ (each $\left.3 \mathrm{H}, \mathrm{s}\right), 2.015,2.022,2.03$, $2.09($ each $3 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{OAc}), 2.05(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc}), 3.67\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-5^{\prime}\right), 3.98(1 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}-7)$, $4.21(2 \mathrm{H}), 4.62\left(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.74(1 \mathrm{H}, \mathrm{t}-\mathrm{like}, J=2.2 \mathrm{~Hz}, \mathrm{H}-3), 4.98-5.30(4 \mathrm{H}), 5.67$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 5.69(1 \mathrm{H}, \mathrm{brd}, J=5.5 \mathrm{~Hz}, \mathrm{H}-6)$; fabms $m / z[\mathrm{M}+\mathrm{Na}]^{+}(+\mathrm{NaI}) 895[\mathrm{M}+\mathrm{K}]^{+}(+\mathrm{KI})$ 911.

METHANOLYSIS OF COMPOUND 1.-Compound $1(1 \mathrm{mg})$ was dissolved in 1 N methanolic HCl $(0.5 \mathrm{ml})$, and the solution was heated $\left(60-70^{\circ}\right)$ for 1.5 h . After being neutralized with $\mathrm{Ag}_{2} \mathrm{CO}_{3}$, the precipitate was centrifuged off. The supernatant was treated with $\mathrm{H}_{2} \mathrm{~S}$ gas, and the resulting precipitate was also centrifuged off. The supernatant was concentrated and dried in vacuo. The residue was trimethylsilyiated and subjected to glc (column HiCap, i.d. $0.2 \mathrm{~mm} \times 50 \mathrm{ml}$; liquid phase CBP-1; carrier gas He at 50 $\mathrm{ml} / \mathrm{min}$; column temperature 210°; injection temperature 290°; detection fid; detection temperature 290°). The chromatogram showed two peaks (Rt 16.7 and 17.6 min) that were completely identical with those from glucose.

Compound 3.-Amorphous powder; $[\alpha]^{26} \mathrm{D}+58.0^{\circ}(c=0.48$, MeOH); ir $\boldsymbol{v} \max (\mathrm{KBr}) 3400(\mathrm{br})$, $1715,1660,1470,1460,1385,1155,1090,1050,1020,980 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}\right) \delta$ $0.85\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 0.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J=6.3 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 1.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.24$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}-16\right), 1.49\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-28\right), 1.546,1.551$ (each 3 H , br s, $\mathrm{H}_{3}-26$ and $\mathrm{H}_{3}-27$), $1.76(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{1}-1\right), 1.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}-22\right), 2.09\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{1}-1, \mathrm{H}_{1}-2\right), 2.24\left(1 \mathrm{H}, \mathrm{m}_{1}, \mathrm{H}_{1}-22\right), 2.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-8)$, $2.69(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 3.84(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.38(1 \mathrm{H}, \mathrm{brd}, J=5.5 \mathrm{~Hz}, \mathrm{H}-7), 5.91(1 \mathrm{H}, \mathrm{d}, J=15.4 \mathrm{~Hz}$, $\mathrm{H}-24), 5.93(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23), 6.28(1 \mathrm{H}$, br d$, J=4.1 \mathrm{~Hz}, \mathrm{H}-6), 10.66\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}-19\right)$; ${ }^{13} \mathrm{C}$ nmr see Table 1; eims $m / z[\mathrm{M}]^{+} 472.3519$ (calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4}, 472.3552$) fabms $m / z[\mathrm{M}+\mathrm{Na}]^{+}(+\mathrm{NaI}) 495$, $[\mathrm{M}+\mathrm{K}]^{+}(+\mathrm{KI}) 511$. Anal. found C $73.89, \mathrm{H} 10.52 \%$; calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 73.43, \mathrm{H} 10.27 \%$.

Dincetate 4.-Compound 3 (12 mg) was acetylated with a mixture of $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine as above. The product was purified by preparative layer chromatography to give diacetate $\mathbf{4}(9.8 \mathrm{mg})$ which was crystallized on addition of MeOH as colorless needles: $\mathrm{mp} 101-104^{\circ}$, ir $\nu \max \left(\mathrm{CHCl}_{3}\right) 3450(\mathrm{br}), 1735,1720$, 1610, 1470, 1380, 1260, 1220, 1190, 1020, 990, $940,920 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.83$, 0.89 (each $3 \mathrm{H}, \mathrm{s}$), $0.91\left(3 \mathrm{H}, \mathrm{d}, J=5.5 \mathrm{~Hz}, \mathrm{H}_{3}-21\right.$), $1.14,1.18$ (each $3 \mathrm{H}, \mathrm{s}$), $1.32\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26, \mathrm{H}_{3}-\right.$ 27), $2.04,2.05$ (each $3 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc}$), $4.48(1 \mathrm{H}, \mathrm{t}$-like, $J=2.5 \mathrm{~Hz}, \mathrm{H}-3$), $5.22(1 \mathrm{H}, \mathrm{brd}, J=5.5 \mathrm{~Hz}$, $\mathrm{H}-7), 5.60(2 \mathrm{H}, \mathrm{H}-23, \mathrm{H}-24), 5.88(1 \mathrm{H}$, br d, $J=5.5 \mathrm{~Hz}, \mathrm{H}-6), 9.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19)$; eims m / z $\left[\mathrm{M}-\mathrm{HOAc}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 478.3462$ (calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{3}, 478.3447$); fabms $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$(+NaI) 579 , $[\mathrm{M}+\mathrm{K}]^{+}(+\mathrm{KI}) 595$.

COMPOUND 6.-Amorphous powder: $[\alpha]^{26} \mathrm{D}+48.9^{\circ}(c=0.45, \mathrm{MeOH})$; ir $\nu \max (\mathrm{KBr}) 3425$ (br), $1715,1660,1470,1380,1000,980 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}, \mathrm{N}\right) \delta 0.88\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-30\right), 0.90$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-18\right), 0.99\left(3 \mathrm{H}, \mathrm{d}, J=5.8 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 1.18\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-29\right), 1.33\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26, \mathrm{H}_{3}-27\right)$, $1.48\left(3 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-28\right), 3.22\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{l}}-22\right), 2.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-8), 2.72(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-10), 3.22(3 \mathrm{H}, \mathrm{s}$, OMe), $3.83(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 4.38(1 \mathrm{H}, \mathrm{brd}, J=5.2 \mathrm{~Hz}, \mathrm{H}-7), 5.55(1 \mathrm{H}, \mathrm{d}, J=15.7 \mathrm{~Hz}, \mathrm{H}-24), 5.63$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-23$), $6.28(1 \mathrm{H}$, br d, $J=5.2 \mathrm{~Hz}, \mathrm{H}-6), 10.65(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19) ;{ }^{13} \mathrm{C}$ nmr see Table 1 ; eims m / z $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+} 468.3615$ (calcd for $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{3}, 468.3603$); fabms $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}(\mathrm{NaI}) 593,[\mathrm{M}+\mathrm{K}]^{+}$ (+KI) 609 . Anal. found C $72.68, \mathrm{H} 9.98 \%$; calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{4} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 72.47, \mathrm{H} 10.39 \%$.

Diacetate 7.-Compound 6 (11.2 mg) was acetylated with a mixture of $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine as above. The product was purified by preparative tlc [solvent $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ (97:3)] to give diacetare 7 (8.8 mg): ir $v \max \left(\mathrm{CHCl}_{3}\right) 1740,1725,1640,1610,1480,1385,1260,1225,1080,1030,950 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ $\mathrm{nmr}\left(200 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.82,0.89$ (each $\left.3 \mathrm{H}, \mathrm{s}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, J=5.9 \mathrm{~Hz}, \mathrm{H}_{3}-21\right), 1.14,1.18$ (each $3 \mathrm{H}, \mathrm{s}), 1.26\left(6 \mathrm{H}, \mathrm{s}, \mathrm{H}_{3}-26, \mathrm{H}_{3}-27\right), 2.04,2.05$ (each $3 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc}$, $3.16(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.84(1 \mathrm{H}, \mathrm{t}-$ like, $J=2.5 \mathrm{~Hz}, \mathrm{H}-3), 5.22(1 \mathrm{H}$, br d, $J=5.1 \mathrm{~Hz}, \mathrm{H}-7), 5.40(1 \mathrm{H}, \mathrm{d}, J=16.1 \mathrm{~Hz}, \mathrm{H}-24), 5.49(1 \mathrm{H}$, $\mathrm{m}, \mathrm{H}-23), 5.88(1 \mathrm{H}, \mathrm{brd}, J=4.0 \mathrm{~Hz}, \mathrm{H}-6), 9.85(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-19)$; eims $m / z[\mathrm{M}-\mathrm{HOAc}\}^{+} 510.3682$ (calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{O}_{4}, 510.3709$); fabms $m / z[\mathrm{M}+\mathrm{Na}]^{+}(+\mathrm{NaI}) 593,[\mathrm{M}+\mathrm{K}]^{+}(+\mathrm{KI}) 609$.

ACKNOWLEDGMENTS

We thank Mallam Isa Isyaku, Dr. Y. Karatela, and Mr. Ali Garko for collection and identification of plant material. We also thank the staff of the Analytical Centre for the Faculty of Pharmaceutical Sciences, The University of Tokushima for measurements of $\mathrm{nmr}, \mathrm{ms}$, and elemental analyses.

LITERATURE CITED

1. B. Oliver-Bever, "Medicinal Plants in Tropical West Africa," Cambridge University Press, Cambridge, 1986, p. 247.
2. M. Georges and K.M. Pandelai, Indian J. Med. Res., 37, 169 (1949).
3. R.F. Heal and E.F. Rogers, Lloydia, 13, 189 (1950).
4. J.M. Wart and M.G. Breyer-Brandwijk, "The Medicinal and Poisonous Plants of Southern and Eastern Africa," Livingstone, Edinburgh and London, 1962, p. 1057.
5. M. Yasuda, M. Iwamoto, H. Okabe, and T. Yamauchi, Cbem. Pharm. Bull., 32, 2044 (1984).
6. H. Okabe, Y. Miyahara, and T. Yamauchi, Chem. Pharm. Bull., 30, 4334 (1982).

Received 13 April 1990

